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Abstract 
This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer 
system, and provides hints and information to enable the reader to port codes to the system. It 
provides a comparison between the basic performance of the X1 platform and other platforms that are 
available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with 
different parallel paradigms, is used to understand some features of the X1 compiler. An example code 
fiom the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 
platform. * 
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Introduction 
The Cray vector supercomputer, which dominated in the 80's and early ~ O ' S ,  was replaced by clusters 
of shared-memory processors (SMPs)  in the mid-90's. Universities across the US. use commodity 
components to build Beowulf systems to achieve high peak speed [ 11. The supercomputer center at 
NASA Ames Research Center had over 2000 CPUs of SGI Origin CCNUMA machines in 2003. This 
technology path provides excellent p r i c d p e d o m c e  iiiti~; hwve~er, many application sofixare 
programs (e.g. Earth Science, validated vectorized CFD codes) sustain only a small faction of the peak 
without a major rewrite of the code. 

The Japanese Earth Simulator demonstrated the low price/performance ratio by vector processors 
connected to high-bandwidth memory and high-performance networking [2]. Several scientific 
applications sustain a large fi-action of its 40 WLOPS/sec peak performance. 

The Cray X1 is a scalable vector system [3], characterized by high-speed custom vector processors, 
higbmemory bandwidth, and a high-bandwidth interconnect linking the nodes. The efficiency of the 
processors in the Cray X1 is anticipated to be comparable to the efficiency of the NEC SX-6 
processors in the Earth Simulator on many computational science applications. 

The Department of Energy recently announced (May 12,2004) an award of $25 Million to the Oak 
Ridge National Lab to lead the effort to install the world's largest computer using X1 technology. [4] 

This paper will focus on the system characteristics and application optimization techniques. The 
hardware will be briefly described, followed by a comparison of the NAS Parallel Benchmarks 

* This study is sponsored by NASA Ames Research Center under AMTI Subcontract SK-04N-02. 
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Chip 

CPU/MHz 

performance with that of other SGI machines. Finally, it will demonstrate some simple techniques for 
optimizing the performance of a specific NAS Parallel Benchmark. 

MIPS Alpha-EV68 Itanium 2 Cray X1 Pentium 4 
R14000 Xeons 
512, 1392, 512, 512 SSP, 512, 2.4GHz 
6 0 OMHz lGHz 1.5GHz 8 0 OMKz 

Cray X I  Hardware Description 
The Cray X1 design is the incorporation of the previous Cray parallel vector processing (PVP) systems 
(such as SVl) and massively parallekprocessing (MPP) systems (such as T3E). The Cray X1 is 
hierarchical in processor, memory, and network design. The basic building block is the multi- 
streaming processor (MSP), which is capable of 12.8 Gflops for 64-bit operations. Housed in each 
MSP are 2 MB of cache shared by four single-streaming processors (SSPs). Each SSP is capable of 3.2 
Gflops for 64-bit operations, each with 32-stage, 64-bit floating point vector unit and a two-way super- 
scalar unit. 

MpI-ALLtoALL MB/ sec /pro MB/ sec/proc 

2 CPUS 116.995 276.731 
8 CPUs 105.114 56.148 
16 CPUs 97.540 33.380 
32 CPUs 81.434 28.525 
64 CPUS 64.540 24.211 

C 

The concept of "CPU" is not very clear. From a programmer's point of view, if the application is 
compiled with the 'LOssp" flag option, each SSP can be viewed as a single CPU; otherwise, an MSP is 
viewed as a single CPU. Since the X1 processor was developed to be comparable to the NEC SX-6 
processor, which has eight vector pipes, OIE MSP is normally viewed as a CPU. 

ME/ sec/proc m/sec/proc MB/ sec/proc 

874.000 
223.642 
131.710 

3025.179 63.565 
2629.884 63.805 
2188.945 60.481 

95.533 1499.350 51.139 
55.314 803.575 46.140 

Four MSPs form a Cray X1 node. Within a node, there are 16 GB (or 32 GB) of flat, shared memory. 
There are three forms of cache in a Cray X1 system, namely, D-cache, I-cache, and E-cache. Each SSP 
has a 16 KB scalar data cache (D-cache) and a 16 KB instruction cache (I-cache); they are two-way set 
associative. Each MSP has a 2 MB &cache shared by the four SSPs. 

Table 1: Basic Performance Comparison With Other Platforms 
Machines I SGI 03K I CPQ SC45 I SGI Altix I Cray X I  I Linux 
Hardware 

CPUhode 14 1 4  1 2  I 4 MSPs 1 2  I I 

! 
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Table 1 gives comparison of some platforms with X1. The platforms compared were, at one time, 
available at NASA Ames Research Center where a performance comparison was completed in March 
2004. It is observed that although the MPI bandwidth of X1 is very high, the latency is very low (9.2 
msec.) across MSPs. The latency is a bit faster (5.1 msec.) across SSPs within an MSP. Nevertheless, 
if an application is latency-bounded, the performance on the X1 would be penalized. According to 
Cray engineers, the later version of X1 will be improved. 

MSP and SSP 
There are two different modes of compiling and running a software application on X1: namely, the 
MSP mode and the SSP mode. The default is the MSP mode. To use the SSP mode, one has to 
compile with the flag 'LOssp" (Fortran). 
The concept of multi-streaming can be illustrated in the following do-loop: 

DO i = 1 , 2 0 0 0  

ENDDO 
k ( i )  = A ( i )  * p i  

Each MSP has four SSP processors. Processor SSPO works on I=1501-2000, SSPl works on I=1001- 
1500, SSP2 works on I=501-1000, and SSP3 works on I=1-500. This do-loop is also called a 
streaming region. Only one of the four SSP processors is used outside of the streaming regions. So, 
streaming is compiler auto-parallelization of eligible loops, with the work divided between the four 
SSPs per MSP. If multiple loops exist, the compiler will automatically apply the streaming to an outer 
loop when feasible. This is identical to the PARALLEL DO directive in OpenMP. In the MSP mode, 
the synchronization between SSPs is done on hardware with lower overhead than using the OpenMP 
directive. 

When an application has difficulty scaling to a large number of processors, using the MSP as the 
principal MPI process provides a more powerful processing node. This may allow scaling to a higher 
sustained performance level with fewer computational units. 

In order to determine if the compiler multi-streams a do-loop, om can include the compiler flag 'Lm" 
for loop markmg. After compilation, a text file (loop-mark report) is created. For example, 

78. 1 M-----< do j=  jst, jend 
79. 1 M V---< do i= i s t a r t ,  iend 
80. 1 M V dunax= max! dumax, abs! du( i, I))) 
81. 1 M V u( i, j ) =  u( i ,  j ) +  du( i ,  j )  
82. 1 M V---> enddo 
83. 1 M-----> enddo 

The "M" means multi-stream, and the "v" means vectorization. The loop-mark report indicates that 
the compiler performs multi-streaming in the outer loop and vectorization in the inner loop, index Y'. 

It should be realized that the vectorization happens at the SSP level, whereas the streaming only exists 
for MSPs. If a code streams well, an MSP is effectively an extremely powefil single processor. If it 
doesn't stream, then it just wastes three SSPs, and it should be run in SSP mode. 
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Even running in SSP mode, the code should be vectorized in order to achieve good performance on the 
X1. As mentioned before, the one X1 node has 16 SSPs; these SSPs share the same 16 GB of memory. 
If the application does not do well in streaming and O p e W  is desired, one can use a maximum of 16 
SSPs for 16 OpenMP processes. 

Sample Problem - Laplacian 
The physical problem is to solve the Laplace Equation, which is the model equation for diffusive 
processes such as heat flow and viscous stresses. It makes a good test case for approaches to numerical 
programming. In two dimensions, the Laplace Equation takes the following forms: 

(1) 
a2u 
ax2 ;hc2 

v2u =-+- = 0 

The set of boundary conditions in this 
report is shown in the Figure 1. For the 
sake of simplicity, the initial guess of 
the solution is u=O. 

u(x,L)=O 

The computational grid is 2000 by 4000, U ( 0 , v )  
= O  with 2000 grid points in the x-direction 

and 4000 points in the y-direction. For 
parallelization, we use 1-D domain 
decomposition in the y-axis. 

The standard finite-difference explicit 
approach is used to discretize equation 

u(x,O)=O 

Figure 1. Computational grid and the boundary conditions 

(1). 

Equation (1) becomes 
ul;l,j - 2u1:;1 + u,:,,j u*:j+, - 224;;' + q j + l  v u -  2 + + O(Ax2,Ay2) 

Ax2 AY ' 
where ul:j is the approximated solution of Eqn. (l), after n iterations, at the f h  grid point in the x-axis 

and thej* grid point in the y-axis. The truncation error, O(Ax2, Ay' ) , is in the order of the square of 
the grid size. This error is small if the number of grid points is large. Rearranging Eqn. (2), we have an 
iterative scheme, 

(3) 

The initial guess, 1.4~:~ , of the solution is set to be zero. 
The same iterative scheme in Eqn. (3) is solved by five different computational regimes. Two of these 
are for serial implementation, and the rest are for parallel implementation. 

There are two possible serial approaches in implementing the finte-difference solution to the Laplace 
Equation described above. 

I 
1 ,  , 
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The cache-friendly approach: cache.f90 
The Au,, calculations, the Au- comp&sons, and the u,,, updates are performed simultaneously. This 
approach performs well on cache-based microprocessor architectures because it tends to re-use cache. 
The main do-loop in an iteration process is gwen belo 
into the inner do- loop. 

do j =  2 ,  j m l  
do i= 2 , i m l  

du(  i ,  j ) =  0 . 2 5 * (  uo( i- 1, I)+ 
uo( i ,  j -  1)+ uo( i, j+  1 

v. It is noticed that we jam all the calculations 

uo( i+ 1, j ) +  & 
) -  uo( i ,  j )  

dumax= m a x (  dumax, a b s (  du( i ,  j ) ) )  
U( i ,  j ) =  uo( i ,  j ) +  d u (  i. j )  

enddo 
enddo 

The vectorized approach: vect.f90 
All A u , , ~  's are computed, then a Au- is fimd before all u,,] 's are updated. This approach should 
perform well on vector-based architectures, such as the Cray X1 and T90 series. The main do- loops in 
the iteration process are given below. 

do j =  2 ,  j m l  
do i= 2 , i m l  

du(  i ,  j ) =  0 . 2 5 * (  uo( i- 1, j ) +  uo( i+ 1, j ) +  & 
uo( i ,  j -  I)+ uo( i, j +  1 ) ) -  uo( i ,  j) 

enddo 
--ad- 
T-IIUU" 

do j=  2 ,  j m l  
do i= 2 , i m l  

dum== m a x (  dumax, abs ( du(  i, j )  ) ) 

u (  i ,  j ) =  uo( i, j ) +  du(  i, j )  
enddo 
enddo 

The Shared Memory Paradigm: omp.f90 
We parallelize the cache- fiiendly code (cache.f90) that uses OpenMP for multi-threading. The j-loop 
comprises the bulk of the work in the program and, clearly, should be parallelized. The main do- loop 
in the iteration process is given below. 
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Machines SGI 02K SGI Altix Cray X I  
Compilation -03 -r8 -64 -mips4 -rlOOOO -03 -r8 -tpp2 -Vaxlib 
Compiler Ver 7.3.1.3~1 Ver 8.0 Ver 5.1.0.3 
vect.f90 22.8523922 sec. 4.010742 sec. 1.27633 sec. . 
cache.f90 12.4084873 sec. 5.435039 sec. 64.8442 sec. 

! $OMP DO R E D U C T I O N (  m a x :  d u m a x )  
do j =  2 ,  j m l  
do i= 2 , i m l  

du(  i ,  j)= 0.25*( uo( i- 1, j)+ uo( i +  1, j)+ & 
uo( i ,  j -  1)+ uo( i ,  j +  1))- uo( i ,  j )  

d u m a x =  m a x  ( dumax, abs ( du ( i , j ) ) ) 
u( i ,  j ) =  uo( i ,  j ) +  d u (  i ,  j) 

enddo 
enddo 
! $OMP END DO 

The Distributed Memory Paradigm: mpi.f90 
We can divide the grid into segments and assign a MPI process to each segment. Each segment also 
needs to maintain “ghost cells”, which contain solution values at points on the boundaries of 
neighboring processes; the ghost cells are kept up-to-date by passing messages between processes 
containing the boundary values. 

do j =  j s t ,  jend 
do i= i s t a r t ,  iend  

d u (  i ,  j ) =  0.25*( uo( i- 1, j ) +  uo( i +  1, j ) +  & 

d u m a x =  m a x (  d u m a x ,  abs(  d u (  i ,  j))) 
u( i ,  j ) =  uo( i ,  j ) +  d u (  i ,  j )  

uo( i ,  j -  1 ) +  uo( i ,  j+ 1 ) ) -  uo( i ,  j) 

enddo 
enddo 

! C o m p u t e  the overa l l  res idua l  
c a l l  MPI-REDUCE( d u m a x ,  g d u m a x ,  1, MPI-REAL8,  MPI-MAX, 0 & 

, MPI-COMM-WORLD, i e r r )  

! sending and receiving boundary data  ( M P I - s e n d / M P I - R e c e i v  ... 

Vecforiza fion 
It is a good exercise to compare the performance of the vector code and cache-friendly code on various 
machines. The following table (Table 2) shows the performance of the vect.90 and cache.fP0 codes of 
the Laplacian solver on three different platforms. 

It is noted that the vector code is 50 times faster than the cache-friendly code on XI .  Thus, 
vectorization is the key on this platform. 
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Machines 02K Mtix x 1  
omp.f90 MSP SSP 
2 o m  Proc 5 8.83 3 6296 22.2773 3.52 9.63 

- 4 OMP Proc 3 1.7845402 11.1982 1.97 5.43 

OpenMP mode 
It is interesting to determine the performance of the OpenMP code on the X1 using different (MSP, 
SSP) modes. The shared memory arena is only available within one node; thus, one cannot use 
OpenMP across two nodes. The maximum number of OpenMP processors available for use in the 
MSP mode is four; in the SSP mode it is 16. 

The MSP mode is faster than the SSP mode because streaming occurs in the outer loop in addition to 
the OpenMP. In the case of the 4-OMP processor run, there are effectively 16 SSPs working on the 
loop. 

It is difficult to conclude which mode is more efficient than the other. General belief is that streaming 
is more efficient (less overhead) than OpenMP; therefore one would use the MSP mode rather 
OpenMP. However, from the above example, the 4-OMP run in MSP mode does not seem very 
efficient in utilizing the processors. When considering the scaling of the Origin 02K and Altix 
platforms, our simple OpenMP case has almost perfect scaling (factor of two), but the X1 does not. It 
is believed that the implementation of OpenMP on the X1 leaves room for improvement. 

Suppose an application requires 16 MPI processes. There are two configurations to consider. One c m  
either use 16 SSPs (4 MSPs) or just use 16 MSPs. Unfortunately; there is no rule of thumb to just& 
what configuration to use. One has to test it both ways. However, it makes sense to use the MSP mode 
if the code streams well and if MPI communication is a bottleneck. 

Below is a demonstration of the performance differences in MSP and SSP modes for the mpi.f90 code. 
Using the Fortran compiler flag 'inn" to create a loop-mark report (see Figure 2). The outer loop at 
line 72, indicated with letter "M', is being streamed in the MSP mode; and vectorization (indicated by 
a letter V") is performed in the inner loop for both cases. The letter "r" means unrolling at the 
compiler level. 

The two reports in Figure 2 are identical except the MSP report has letter "M" indicating multi-stream. 
Our test case is a very nice multktream code. On the other hand, it is also very efficient in the MPI 
communication paradigm using high-bandwidth unblocked MPI send and receive. Figure 3 compares 
the performance from the MPI code using MSP and SSP modes. The horizontal axis indicates the 
number of PE (MPI processes). Using 2 PES in MSP mode would require 8 SSP processors; whereas, 
using 2 PES in SSP mode requires 2 SSPs. 

Therefore, the 2-PE run in MSP mode (red line) is using the same amount (8) of SSPs as the 8-PE run 
in the SSP mode (green line). It is shown that these two runs have the same performance in terms of 
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timing. However, as we increase the number of PES, the 16-PE run in the SSP mode is slower than the 
4-PE m in MSP mode. 

This can be explained by the fact that as PE increases, the number of communication increases but the 
transfer data size is smaller. Therefore, the latency bound of the machine is revealed. Even though the 
communication is confined in the same node (16 SSPs per node), and it is supposed to be fast, the 
shortfall of the latency of X1 will catch up in OUT case. On the other hand, streaming is a very efficient 
and powerhl tool on the X1. If the code streams well, one may be inclined to use the processor power 
for streaming rather than on passing messages (MPI). 

MSP mode 

68. 1-------< do it= 1, itmax 
69. 1 dumax= 0.0 
70. 1 jst=jstart 
71. 1 if(rank.eq.0) jst=jstart+l 
72. 1 Mr----< 
73. 1 Mr V--< 

do j= jst, jend 
do i= istart, iend 

74. 
75. 
76. 
17. 
78. 
79. 
80. 
81. 

Mr V 
Mr V 
Mr V--> 
Mr----> 
M-----< 
M V---< 
M V  
M V  

du( i, j)= 0.25'( uo( i- 1, j)+ uo( i+ 1, j)+ 8I 
uo( i, j- 1)+ uo( i, j+ 1))- uo( i, j) 

enddo 
enddo 
do j =  jst, jend 
do i= istart, iend 
dumax= max( dumax, abs( du( i, j))) 
u( i, j)= uo( i, j)+ du( i, j )  

82. 1 M V---> enddo 
83. 1 M-----> enddo 
90. 1 ! Send phase 
91. 1 
92. 1 i= 1 
93. 1 MV----< 
94. 1 MV 
95. 1 MV i= i+ 1 
96. 1 MV----> enddo 
97. 1 length= i- 1 
98. 1 
99. 1 
100. 1 endif 

if (left .NE. MPI-PROC-NULL) then 

do j =  jstart, jend 
Ibuf( i)= u( istart, j) 

call MPI-SEND( Ibuf, length, MPI-REAL8, 81 
left, it, mpigrid, ierr) 

SSP mode 

68. 1------< do it= 1, itmax 
69. 1 dumax= 0.0 
70. 1 jst=jstart 
71. 1 if(rank.eq.0) jst=jstart+l 
72. 1 r----< 
73. 1 r V--< 
74. 1 r V 
75. 1 r V  
76. 1 rV-+ enddo 
77. 1 r----> enddo 
78. 1 2 - 4  
79. 1 2 V--< 
80. 1 2 V 
81. 1 2 V 
82. 1 2  V--> enddo 
83. 1 2--+ enddo 
90. 1 ! Sendphase 
91. 1 
92. 1 i= 1 
93. 1 V----< 
94. 1 v 
95. 1 v i= i+ 1 
96. 1 V----> enddo 
97. 1 length= i- 1 
98. 1 
99. 1 
100. 1 endif 

do j =  jst, jend 
do i= istart, iend 
du( i, j)= 0.25'( uo( i- 1, j)+ uo( i+ l,j)+ 81 

uo( i, j- I ) +  uo( i, j+ 1))- uo( i, j )  

do j =  jst, jend 
do i= istart, iend 
dumax= max( dumax, abs( du( i, j))) 
u( i, j)= uo( i, j)+ du( i, j )  

if (left .NE. MPI-PROC-NULL) then 

do j =  jstart, jend 
Ibuf( i)= u( istart, j )  

call MPI-SEND( Ibuf, length, MPI-REAL8, & 
left, it, mpigrid, ierr) 

Figure 2. Loop-mark Reports of MSP and SSP modes 
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Figure 3. MSP and SSP performance on MPI Laplacian solver. 

If one's MPI codes rely on the system for internal buffering of messages, one has to turn it one. This is 
turned off by default on the XI. To turn it on and/or increase buffer size, one can set the followkg 
environment variables: 

export MPI -RUFFER=l 
export MPI-BUFFER-MAX=~O~OOOO (default 0 bytes) 

Another variable that may be of interest when sending long messages is MPI-BUFS-PER-PROC. The 
defxd: is 16 or 32 pges  (1  page = 16 KB). 

Data Size Piffalls 
One topic worth discussing in code porting to XI is data size. The XI system is, by default, an IEEE 
32-bit system with compiler options and libraries to permit the use of 64-bit data type. To increase the 
default data size from 32 bits to 64 bits, one can use the Fortran compiler option -s default 64. 
Selectively, one can use -s  integer64 and - s  real64 options to change the default data sizes 
of integers, logical, or real to 64 bits. 

It should be noted that the REAL  KIND=^ ) and REAL have the same range and precision when the -S 
default 3 2 Compiler option is enabled (default). The REAL (KIND= 8 and REAL have the same range 
and precision when the -S default 64 option is enabled. 

For example, ifthe -s default64 option is used, variables declared as DOUBLE PRECISION will be 
promoted to 128 bits. However, the LibSci scientlfc library does not support that (please see Table 4 
for argument types and sizes for LbSci on Cray). Normally, one would turn off the double precision 
by using the compiler option -dp. That is, compiiing with - s  def aul t64 -dp will promote REAL 
variables to 64 bits and keep those RSXL ( K X D = ~ )  or DOUSLE PRSCISION variables to 64 bits. 

The XI compiler links the appropriate libraries according to - s  default32 or -3 default64. 
Therefore. the h@I libraries provide support only for codes compiled with the -S def ault32 and -S 
default 64 options. In other words, compiling with - s  rea164 , and expecting h@I to recognize that 
the transfer (MPI sendlreceive) variables are 64-bit would be wrong! 
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Using - s default 6 4 will convert INTEGER to INTEGER   KIND=^ ) . l h s  will crash certain system calls 
that require an INTEGER* 4 argument (such as FLUSH). In this case, one has to declare the relevant 
variables explicitly to ensure that the variables will not be promoted to (KIND= 8 ) by accident. 

Details of the data type information can be found in the Cray X1 User Environment Differences, 
S-23 10-5 1 Chapter 4. Libraries Differences. [5] 

Table 4: Argument types and sizes for LibSci on Cray 

Type Description 
single precision real 

double precision real 

single precision complex 

double precision complex 

integer 

32-bit Library (default) 64-bit Library 

Bits Fortran Specification 
32  REAL (KIND=4), 

REAL * 4 
64 REAL (KIND=8), 

REAL * 8 
64 COMPLEX (KIND=4 ) , 

COMPLEX* 8 
12 8 COMPLEX (KIND=8 ) , 

COMPLEX*16 
32 INTEGER(KIND=4), 

INTEGER* 4 

Bits Fortran Specification 
64 REAL  KIND=^ ) , 

N/A N/A 
REAL * 8 

12 8 

N/A N/A 

COMPLEX (KIND=8 ) , 
COMPLEX*16 

64 INTEGER(KIND=8), 
INTEGER* 8 

NAS Parallel Benchmark 
One of the benchmarks in the NAS Parallel Benchmark 2.4 suite [7] is used to demonstrate 
performance optimization on the X1. Table 5 shows the timing of a subset of the benchmarks. This 
version of NAS Parallel Benchmark uses MPI. 

The LU benchmark solves a finite difference discretization of the 3-D compressible Navier-Stokes 
equations through a block- lower-triangular block-upper-triangular approximate factorization of the 
original difference scheme. The BT benchmark uses an implicit algorithm to compute a finite- 
difference solution to the 3-D compressible Navier- Stokes equations. The resulting equations are 
block-tridiagonal (the fourth order dissipation appears only on the right-hand side, so the left-hand side 
difference stencil has a width of three blocks). The MG benchmark implements a V-cycle multi-gnd 
algorithm to solve the scalar discrete Poisson equation. 

The MG benchmark MFLOPS rate in Table 5 is about the same as shown in Dunigan's emhation [6]. 
However, the paper did not give the MFLOPS of the other benchmarks. The comparison for all NAS 
parallel benchmarks can be found in [8]. From Table 5 ,  it is seen that X1 does well only with the MG 
benchmark, the others do not do well at all. 

L 
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Machines 

Compilers and 
Libraries 

Optimization FIags 
Mopls Total 

SGI 02W03K Altix Cray X1 
400/800 MHz 1.3GHz I 1.5GHz 800 MHz 
MIPSpro.7.3.l.lm Intel Fortran Compiler V7.1 Cray Fortran 
mpt.l.4.0.0 cftn.4.3 

-0fast -64 -03  -w -ip -tpp2 -stack-temps -03 -0ssp 

1 bt.B.4 
bt.B.16 
bt.B.64 
lu.B.4 
lu.B.16 
lu.B.04 
mg.B.4 
mg.B.16 
mg.B. 64 

71 15390 
466 
1992 
12700 
879 
3941 
20656 
643 
2432 
15644 

13947 
381 

1532 
5506 
24221 
3837 
14585 
46684 
2943 
12210 
35688 

1435 
6689 

I7557 
561 
2597 

668 
2645 
10090 
1441 
5281 
20004 
9141 
31549 
88587 i 

1688 
6018 
31486 
4641 
16755 
58370 
3486 
12773 
46083 

I I 

bt.C.4 220 417 
bt.C.16 1065 1811 
bt.C.64 5954 10240 
lu.C.4 542 845 
lu-C.16 2107 3297 
l i i . C . 6 4  9713 14923 

1117 1559 
5555 6214 
21657 26970 
2 647 4447 
15374 17034 
52269 59283 

10451 

mg.C.4 267 522 2420 
mg.C.16 1468 2398 10525 
mg.C.64 5599 9664 46806 

2969 
13782 
51590 

I 21747 
47382 

Pe rfo rman ce 0 ptim kat  io n 
The BT Class C, built with MSP mode, will be used as an example for performance optimization. The 
original performance is about 180 MFLOPS/process using -03 compilation flag. From the table above 
the MFLOPS/process rate of the BT (in SSP mode for a range of numbers of processors) is about 165; 
so the original BT does not stream well at all! 

To understand where the "hot spot" is, we create an instrumented executable (bt.C.9-inst) by using 
"pat-build" after the executable (bt.C.9) is built. The instrumented executable will be used and an 
instrumented file (*.xf He) will be created. A report can be created by "pat-report": 

prompt, pat-build bt.C.9 bt.C.9-inst 
prompt> mpirun -np 9 ./bt.C.g_inst 
prompt> pat-report bt.C.9-inst+250973pdt.xf 

The report shows that routine "binvcrhs" takes most of the time and it is called by x-solve-cell, 
y-solve-cell, and z-solve-cell. From the loop-mark (use flag -m) report of the file x-solve.f, the 
area of interest is the loop (line 439) in routine x-solve-cell, see Figure 4. The loop-mark report shows 



that ths  loop is not streamed nor vectorized because subroutines matvec-sub, matmul-sub, are 
binvcrhs are in the loop. Thus, we d i n e  the subroutines by adding Irective, ! dir$ inline, before 
the call of the routines or adding !dir$ inlinealways binvcrhs inside the routine binvcrhs. One 
can always use the compiler to do the inlining by using the flags: 

-0inline5 andfor -Oinlinefrom={x-solve.f,lhsx.f} 

12 

439. 1 ---------- c 
440. 1 2--------c do j=start(2,c)jsize 
441. 1 2 3------< 
442. 1 2  3 
443. 1 2 3 c __________..____________________________-------------- * _ _ _ _ _ _ _ _ _ _ _ _ _ _  
444. 1 2 3 c rhs(i) = rhs(i) - A'rhs(i-1) 
445, 1 2 3 c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - - - - - ~ ~ ~ ~ ~ - - ~ - - - ~ - - - ~ ~ ~ ~ ~ ~ ~ ~ - ~ - ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~  
446. 1 2 3 I => Vs call matvec-sub(lhs(l,l,aa,ij,k,c), 
441. 1 2  3 > rhs(1 ,i-1 j,k,c),rhs(l ,i,j,k,c)) 
448. 1 2  3 
449. 1 2 3 c ---___________------~-.---------------------------------------------- 
450. 1 2 3 c B(i) = B(i) - C(i-l)*A(i) 
451. 1 2 3 ..................................................................... 
452. 1 2 3 I => Vs 
453. 1 2  3 > Ihs(l,l,cc,i-1 j,k,c), 
454. 1 2  3 > Ihs(l,l,bb,ij,k,c)) 
457.123 ..................................................................... 
458. 1 2 3 multiply c(i,j,k) by b-inverse and copy back to 
459. 1 2 3 

461. 1 2 3  
462. 1 2  3 > Ihs(l,l,cc,ij,k,c), 
463. 1 2  3 > rhs(l,ij,k,c) ) 
464. 1 2  3 

do k=start(3,c),ksize 

do i=istart+first,isize-last ftn-3022 ftn: INLINE File = x-solve.f, Line = 427 

too large to expand inline. 

ftn6288 fin: VECTOR File = x-solve.f, Line = 439 

because it contains a call to subroutine "binvuh-" 
on line 461. 

Routine BINVCRHS was not inlined because it is 

A loop starting at line 439 was not vectorized 

call matmul-sub(lhs(l,l,aa,ij,k,c), 

c 
c multiply rhs(lj,k) by b-inverse(lj,k) and copy to rhs 

460. 1 2 3 c ______________._________________________----------------------------- 
call binvcrhs( Ihs(1,l ,bb,ij,k,c), 

Figure 4. Loop Mark Report of x-so1ve.f. 465. 1 2 3------> enddo 
466. 12--------> enddo 

! 

i 

Since tkre is dependency in "i" (see line 450 in Fig 4.); we don't get vectorization in "i"; but we can 
get vectorization in "j". Thus, we move the i- loop outside and force concurrent execution by adding 
directive ! dir$ concurrent : \ 

do i=istart+first,isize-last 
!dir$ concurrent 

!dir$ concurrent 
do k=start (3,c) ,ksize 

do j=start(2,c),jsize 

Similar directives should be put in y-solve-cell and z-solve-cell as well. 

The next routines of interest indicated from the pat-report are lhsx.f, lhsy.S and Ihsz.f; they are called 
by the x-solve.f, y-solve.f, and z-solve.f, respectively. From the loop- mark report of x-so1ve.f : 
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ftn-3021 ftn: INLINE File = x-solve-f, Line = 54 

the routine to expand it inline. 
Routine LHSX was not inlined because the compiler was unable to locate 

So, we can inline the routine by putting the directive 'I! dir$ inlinealways lhsx" inside lhsx.f. 
Similarly, we can inline h y . f  and lhszf. However, the loop-mark report in lhsx.f shows that there is 
no streaming in one of the loops, the reason is : 

ftn-6755 ftn: STREAM File = lhsx.f, Line = 24 

was found on "TMP1" between lines 28 and 121. 
A loop starting at line 24 was not multi-streamed because a recurrence 

Here are the two occurrences of the variable tmpl : 
24. 1 --_---_ < do k = start(3,c), cell_size(3,c)-end(3,c)-l 
25. 1 2-----< do j = start(2,c), cell-size(2,c)-end(2,c)-l 
26. 1 2  VS--< do i = start(1,c)-1, isize + 1 
27. 1 2  Vs 
28. 1 2  Vs tmpl = 1.0d+00 / u(l,i,-j,k,c) 
29. 1 2 Vs tmp2 = tmpl * tmpl 
30. 1 2 Vs tmp3 = tmpl * tmp2 

and 
119. 1 2 vs--< 
120. 1 2 vs 
121. 1 2 vs 
i22. 1 2 vs 

do i = start(l,c), isize 

tmpl = dt * txl 
tmp2 = dt * tx2 

Although these two tmpli s are not related, the compiler cannot distinguish if they are recurrent or 
independent. One can solve this problem by renaming the second tmpl. Then, the loop will be 
streamed. After recompile and rerun the benchmark, the new performance number is 1235.67 
MFLOPS/process using the compilation flags, 
-03 -0inline5 -Oinlinefrom={x-solve.f,lhsx.f}. 

The performance number indicates that we are heading to the right direction. Repeat the "pat-report" 
profiling, it is found that the x-so1ve.f is s t i l l  the most time consuming file. The loop in Fig.4 becomes 
the loop in Figure 5. 

I 

matvec-sub and matmul-sub. Those loops, however, is only of size 5: 

439. C do i=istart+firs~isize-last 
440. m !dit-$ concurrent 
441. m M __.____- c 

442. r n M  !dir$ concurrent 
443. m M >  ____-____ c 

444. m M 3  

ftn-6294 ftn: VECTOR File = x-sdve.f, Line = 443 

because a better candidate was found at line 448. 
do k=start(3,c),ksize A loop starting at line 443 was not vectorized 

do j=start(2,c)Jsize 

... 
448. rnM31 call rnatvec-sub(lhs(l,l,aa,iJ,k,c), 
449. m M 3  > rhs(l,i-lJ,tc).rtts(l,ij,k,c)) 
450. rnM3 

Figure 5. New Loop Mark Report of x-so1ve.f. The J-loop is not vectorized. 

The loop-mark report indicates that the loop starting at line 443 is not vectorized because a better 
candidate was found at line 448. It turns out that the compiler vectorizes the loops in routines 
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do j=1,5 
cblock(1, j) = cblock(1, j) - ablock(1,l) *bblock(l, j) 

> - ablock(l,2)*bblock(2, j) 
> - ablock (1,3) *bblock (3, j ) 
> - ablock (1,4) *bblock (4, j ) 

Therefore, a directive 'I! dir$ unroll 5" can be put in front of the loops in matvec-sub and 
matmul-sub to avoid the vectorization of this loop of size 5 . With the unrolling, the performance is 
2173. MFLOPS/process because the loop 443 in Fig. 5 is vectorized. 

Similar directive can be put in front of loops in other routines, for example, in routine, 
x-send-solve-info : 

175. 
176. 
177. 
178.. 
179. 
180. 
181. 
182. 
183. 
184. 

By adding compiler directives, the perfonnance of the BT Class C is improved from 180 
MFLOPS/process to 21 73 MFLOPS/process, about 12 times faster than the original benchmark. 

Conclusion 
In thls paper we have shown the characteristics and application optimization techniques on the X1 
system. The characteristics and performance of the system on vectorized code, cache- friendly code, 
MPI code, and OpenMP code are demonstrated with a Laplacian solver. It is realized that an 
application code has to be vectorized in order to perform well on the X1. The multkstream capability 
is very desirable in order to achieve good performance from the X1. A vectorized loop can be 50 times 
faster than a cache-friendly code on X1. The differences in MSP and SSP modes are also 
demonstrated. There is no rule of thumb to justifL what configuration to use. One has to test it both 
ways. However, it makes sense to use the MSP mode if the code streams well and if MPI 
communication is a bottleneck. It is demonstrated that for a fixed data size, as number of PE increases, 
the number of communication increases but transfer data size decreases; the latency bound of the 
machine is revealed. Even though the communication is confined in the same node (16 SSPs per 
node), and it is supposed to be fast, the shortfall of the latency of X1 will catch up in our case. If the 
code streams well, one may be inclined to use the processor power on streaming rather than on MPI. 

The X1 performance is also conpared with other SGI machines (Origins and Altix). Several common 
and important compilation flags and environment variables are introduced as well. We demonstrate 
the usage of a profiling tool, pat-build, and the loop-mark report to improve the performance of a NAS 
Parallel Benchmark from 180 MFLOPS/process to 21 73 MFLOPS/process. 

The pitfall of data size on X1 is also discussed. For example, the flag - s  rea164 should be used with 
care because the native MPI library does not support it. 
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